Free Resolutions and Change of Rings
نویسندگان
چکیده
Projective resolutions of modules over a ring R are constructed starting from appropriate projective resolutions over a ring Q mapping to R. It is shown that such resolutions may be chosen to be minimal in codimension ≤ 2, but not in codimension 3. This is used to obtain minimal resolutions for essentially all modules over local (or graded) rings R with codimension ≤ 2. Explicit resolutions are given for cyclic modules over multigraded rings, and necessary and sufficient conditions are obtained for their minimality.
منابع مشابه
Linearity Defects of Modules over Commutative Rings
This article concerns linear parts of minimal resolutions of finitely generated modules over commutative local, or graded rings. The focus is on the linearity defect of a module, which marks the point after which the linear part of its minimal resolution is acyclic. The results established track the change in this invariant under some standard operations in commutative algebra. As one of the ap...
متن کاملCOHEN-MACAULEY AND REGULAR LOCAL RINGS Contents
1. Flat, projective, and free modules 1 2. Review of regular local rings 2 3. Cohen-Macauley rings 2 4. The Koszul complex 3 5. The Koszul resolution detects depth 5 6. The detection of depth by use of Ext 6 7. Global dimension 6 8. Minimal resolutions and global dimension 7 9. Serre’s characterization of regular local rings 8 10. The Auslander-Buchsbaum theorem 10 11. Localizations of regular ...
متن کاملAdic Approximation of Complexes, and Multiplicities
In [2, Section 1.6] Peskine and Szpiro prove a theorem on adic approximations of finite free resolutions over local rings which, together with M. Artin's Approximation Theorem [1], allows them to "descend" modules of finite projective dimension over the completions of certain local rings to modules of finite projective dimension over finite etale extensions of those rings. In this note we will ...
متن کاملFinite Free Resolutions and 1-Skeletons of Simplicial Complexes
A technique of minimal free resolutions of Stanley–Reisner rings enables us to show the following two results: (1) The 1-skeleton of a simplicial (d − 1)-sphere is d-connected, which was first proved by Barnette; (2) The comparability graph of a non-planar distributive lattice of rank d − 1 is d-connected.
متن کاملNumerical Investigation of Vortex Interaction in Pipe Flow
To discover the nonlinear characteristics of pipe flow, we simulated the flow as a sum of many vortex rings. As a first step, we investigated the nonlinear interaction among a maximum of three vortex rings. The pipe wall was replaced by many bound vortices. A free vortex ring moves right or left according to the radius, and that of a particular radius keeps the initial position. The energy of a...
متن کامل